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Abstract. Leaf analysis is a key tool for determining blueberry plant nutritional status.
For leaf analysis to be useful, optimal concentration thresholds must be established.
Existing thresholds, which were developed for northern highbush blueberry (NHB;
Vaccinium corymbosum), recommend optimal blueberry leaf nitrogen (N) concentra-
tions between 1.76% and 2.00%. It is unclear, however, whether these values accu-
rately represent southern highbush blueberry (SHB; V. corymbosum interspecific
hybrids) because SHB and NHB exhibit contrasting physiological responses and culti-
vation ranges. This study aimed to refine N sufficiency ranges for SHB, accounting
for variations across production systems (deciduous and evergreen) and phenological
stages (vegetative growth, flower bud initiation, bloom, and fruit development). Data
from five previous experiments were analyzed by fitting Normal, Gamma, and Wei-
bull distributions. A sufficiency range approach was then used to identify optimum
leaf N thresholds for SHB. Finally, the accuracy of these thresholds was assessed with
a random forest classification model that included plant, management, and environ-
mental data. The Gamma distribution provided the best fit in three of the seven system-
by-stage groups, with normal and Weibull distributions each selected in two. Refined leaf
N sufficiency thresholds, derived from the best-fitting distribution model for each system
by stage group, were proposed. The random forest classification supported the agro-
nomic and physiological relevance of the proposed leaf N concentration thresholds.
These results will improve nutritional status diagnostics in SHB production.

Southern highbush blueberry (SHB; Vac-
cinium corymbosum interspecific hybrids) is
a commercially important crop in regions with
low chill hour accumulation globally (Lyrene
2002). In US states with mild winters, such
as Florida, SHB cultivars represent nearly all
new plantings and secure the state’s competi-
tive position in the early-season fresh market
(Williamson and Phillips 2024). Other major
US blueberry-producing states, including
Georgia, have also expanded SHB acreage to
meet early domestic demand and improve
market timing (Scherm and Krewer 2003).
Additionally, SHB production has grown sig-
nificantly in countries such as Peru, Mexico,
and Morocco, which are now among the top
producers and exporters of fresh blueberries
(Brazelton et al. 2024; US Department of

Agriculture, Foreign Agricultural Service 2025).
In these regions, SHB is cultivated as a decidu-
ous or evergreen bush.

Fertilization of SHB can be challenging,
especially in terms of nitrogen (N) due to
crops’ sensitivity to either excessive or low N
availability (Phillips and Williamson 2020),
as well as the shallow roots systems that can
limit water and nutrient uptake (Nunez et al.
2016). Monitoring leaf N concentration is
critical for accessing the nutritional status of
plants and diagnosing N deficiency or excess
(Reuter and Robinson 1997). Leaf N concen-
tration data, combined with other criteria, can
indicate whether N fertilization practices meet
crop needs and guide fertilizer management
(Bryson and Mills 1992). This is especially
important for perennial fruit crops where plant
nutritional status can ultimately affect yield
and quality for more than one season-year
(Reuter and Robinson 1997).

Existing guidelines for northern highbush
blueberry (NHB, Vaccinium corymbosum)
have evolved substantially over time and
vary by region. Early studies from Oregon
suggested optimal leaf N concentrations
range between 1.76% and 2.10% (Hart et al.
2006), with subsequent revisions expanding

this range to 1.40% to 2.20% (Strik and
Davis 2023). More recent work reported
optimal ranges of 1.50% to 2.00% in western
Washington and 1.25% to 1.75% in eastern
Washington. In Michigan, optimal N concen-
trations range between 1.70% and 2.10%
(Lukas et al. 2022; Strik and Davis 2023). It is
unclear, however, whether these values accu-
rately represent optimal leaf N concentrations
in SHB. Leaf nutrient standards must account for
a range of biological and environmental factors,
including species-specific growth rates, develop-
mental stages, and nutrient uptake efficiency. In
perennial horticultural crops, further complexity
arises from seasonal variation, fruit load,
and pruning practices (Reuter and Robinson
1997). This highlights the importance of un-
derstanding context-specific factors that in-
fluence nutrient levels and plant analysis
outcomes.

Interpreting leaf nutrient concentrations re-
lies on comparisons of measured nutrient
concentrations with references derived from
datasets compiled from years of observation
and experimentation (Bennett 1993; Reuter
and Robinson 1997). When leaf nutrient con-
centrations fall below the reference value for a
certain nutrient, the plant is presumed to be de-
ficient in that nutrient. A commonly used
method for developing these standards in
horticultural crops is the sufficiency range
approach, which uses statistical distributions to
define nutrient sufficiency ranges based on the
observed frequency of nutrient concentrations.
The sufficiency range approach accounts for
the natural variation in concentrations of a cer-
tain nutrient by evaluating the fit of different
distribution models and defining upper and
lower sufficiency limits in the distribution
(Cera et al. 2022; Mhango et al. 2021; Veazie
et al. 2024a).

Machine learning techniques are also used
to model plant nutrition dynamics and im-
prove decision-making (Ennaji et al. 2023;
Munir et al. 2022; Veazie et al. 2024b). In
the context of nutrient diagnosis, exploratory
models can be applied to evaluate the relative
contribution of environmental, management,
and physiological factors to plant nutritional
status. This approach complements traditional
sufficiency range approach methods by identi-
fying variables that most influence nutrient
classification.

The objective of this work is to use leaf
N data to define leaf N concentration suffi-
ciency ranges for SHB in a subtropical area
of the southeastern Unites States, using plant
tissue analysis and machine learning to sup-
port data-informed fertilization recommenda-
tions for SHB growers.

Material and Methods

Data collection. Leaf N concentration data
were collected from field experiments con-
ducted across four locations in Florida be-
tween 2021 and 2025 (Table 1). Experiments
included both evergreen and deciduous pro-
duction systems of SHB, evaluating various
N fertilization rates ranging from 5.6 to
448.3 kg N·ha�1·year�1. Leaf sampling
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occurred at defined phenological stages: vegeta-
tive growth (June–August), flower bud initiation
(September–December), bloom (January–
February) and fruit development (March–
May). Samples consisted of fully expanded
leaves from the current season’s growth,
with petioles remaining attached, and randomly
distributed throughout the plant canopy. Leaf
sampling was not possible during the bloom
stage of deciduous SHB plants, as the crop typi-
cally blooms before fully expanded leaves are
present. A total of 1902 leaf samples were ana-
lyzed over multiple years and sampling dates.

Data preprocessing. Before statistical
modeling, the dataset was filtered to include
only N fertilization rates within the typical
commercial range for SHB in Florida, from
140 to 336 kg N·ha�1·year�1. Data points
outside this range were excluded to reduce in-
fluence from excessively low or high rates
not representative of commercial practices.
Potential outliers, defined as observations be-
low the first and above the 99th percentiles of
leaf N concentration, were also excluded to
minimize the influence of extreme or biologi-
cally implausible values. The final dataset
consisted of 1266 observations. All leaf N
concentrations are reported as percent dry
weight (equivalent to g N per 100 g dry leaf
tissue).

Linear mixed model. Data were fit to a lin-
ear mixed model (LMM) for quantifying the
effects of production systems (deciduous vs.
evergreen) and phenological stages (vegeta-
tive, flower bud initiation, bloom and fruit de-
velopment) on leaf N concentrations. Fixed
effects included production system, pheno-
logical stage (treated as a repeated measure),
and their interaction. Random intercepts for
location and year were included to account
for site and temporal heterogeneity. Signifi-
cance of fixed effects was assessed using
type III ANOVA with Satterthwaite’s ap-
proximation for denominator degrees of
freedom, as implemented in the lmerTest
package (Kuznetsova et al. 2017).

Distribution fitting. Data were fit to nor-
mal, gamma, and Weibull distributions (Cera
et al. 2022; Mhango et al. 2021; Weibull
1951) using the MASS package (Venables
and Ripley 2013) in R version 4.3.1(R Core
Team 2021). Model selection was based on
Akaike information criterion (AIC) value,

supported by visual diagnostics (e.g., Q-Q
plots and histograms). The distribution with
the lowest AIC value was considered the best
representation of the data among the choices
available. Where two distributions had close
AIC values (DAIC<2, where DAIC is the dif-
ference between a model’s AIC and the small-
est AIC among the candidate models fit to
the same data), both models were consid-
ered statistically equivalent. In these cases,
the final model selection was guided by vi-
sual assessment of the fitted curves relative
to the observed data. The sufficiency range
was based on the area between the 0.25 and
0.75 quantile interval of the best fitting dis-
tribution. “Low” and “High” ranges were
defined as the 0.025 to 0.25 and 0.75 to
0.975 quantile intervals, respectively. Val-
ues below the 0.025 quantile were classified
as “Deficient,” and those above the 0.975
quantile were classified as “Excessive.” Re-
sults were illustrated using ggplot2 in R
(Wickham 2006).

Thresholds validation. The consistency of
sufficiency range approach derived thresholds
was assessed by implementing a random for-
est classification model in Python (version
3.9) to predict nutrient-status categories (defi-
cient, low, sufficient, high, excessive) from
plant, environmental, and management varia-
bles. This allowed us to assess the degree to
which the sufficiency range approach catego-
ries were supported by the broader dataset,
identify possible inconsistencies, and explore
the relative importance of explanatory varia-
bles. Predictors were plant age, cultivar, sea-
sonal N fertilization rate (the cumulative
annual N fertilizer input), phenological stage,
leaf N concentration, temperature (average
air temperature per phenological stage), and
rainfall (cumulative rainfall per phenological

stage). Yield was not included as a predictor
because previous studies with perennial crops
indicate that leaf nutrient concentrations do
not impact yield consistently (Arrington and
DeVetter 2017; Strik et al. 2019).

Categorical predictors (cultivar, phenologi-
cal stage, production system and year) were la-
bel encoded, and numerical predictors (age, N
rate, temperature, rainfall and leaf N) were stan-
dardized. Temperature and rainfall data were
sourced from Florida Automated Weather
Network (2025). The model was configured
with 100 trees (estimators), a maximum depth
of 10, and a fixed random state for reproduc-
ibility. The dataset was partitioned using a
stratified 70 to 30 train–test split to maintain
class balance in the evaluation set. Model per-
formance was computed on the held out test
set. The relative importance of predictors was
summarized using mean decrease in impurity.

Results and Discussion

Linear mixed model. Leaf N concentration
was influenced by the production system,
plant phenological stage, and their interaction
(Table 2). The interaction indicates that stage
related differences in leaf N concentration
depend on production system. Leaf N con-
centrations vary with phenological stage
due to physiological shifts in nutrient de-
mand and remobilization (Ba~nados et al.
2012; Bryla et al. 2012; Bryla and Strik
2015; Carranca 2009). Recognizing these
growth patterns is essential for optimizing nu-
trient management and understanding leaf nu-
trient concentrations at different phenological
stages. Furthermore, major physiological and
management differences between evergreen
and deciduous SHB systems are likely to af-
fect leaf N status. One key difference among

Table 1. Sources of southern highbush blueberry (SHB; Vaccinium corymbosum interspecific hybrids) leaf nitrogen (N) concentration data used in the de-
velopment of the new leaf N sufficiency ranges. Data were collected from southern highbush blueberry farms in Florida between 2021 and 2025.

Location Cultivars Year Data points Notes
Commercial farms in Umatilla, FL (lat. 28�

58' 18", long. –81� 47' 6") and Archer, FL
(lat. 29� 32' 51", long. �82� 29' 4")

Optimus Sentinel 2023–25 480 Study on N fertilizer rates (84 to 448 kg N ha�1·yr�1)
of Deciduous SHB (unpublished)

UF/IFAS Plant Science Research farm in
Citra, FL (lat. 29� 25' 11", long.
–82� 10' 12")

Sentinel Arcadia 2022–25 910 Study on N fertilizer rates (5.6 to 448.3 kg N ha�1·yr�1)
Evergreen SHBi

UF/IFAS Plant Science Research and
Education Unit in Citra, FL (lat. 29� 25'
11", long. –82� 10' 12")

Farthing Emerald 2021 350 Study on N fertilizer rates (56 to 336 kg N ha–1·yr�1)
of Deciduous SHB (unpublished)

Commercial farms in Wimauma, FL (lat. 27�
44' 2", long. –82� 14' 12") and Dade City,
FL (lat. 28� 22' 34", long. –82� 20' 40")

Farthing Kestrel
Endura Sentinel
Ventura Albus

2022 162 Study on N fertilizer programs of Evergreen SHB
(unpublished)ii

i Published study: Goldsby, L. Optimizing nitrogen rate and timing for young evergreen southern highbush blueberry. University of Florida 2024.
ii N fertilizer rates at commercial farms were not available.

Table 2. Type III analysis of variance results from a linear mixed model evaluating the effects of pro-
duction system, phenological stage, and their interaction on leaf N concentration of southern high-
bush blueberry plants. Random effects accounted for variability among locations and years.
Significant interaction supports the development of system by stage specific sufficiency ranges.
Data were collected from southern highbush blueberry farms in Florida between 2021 and 2025.

Effect Sum Sq Mean Sq Num df Den df F value Pr (>F)
Production system:stage 1.349 0.675 2.000 1252.086 7.215 <0.001
Production system 0.535 0.535 1.000 1057.391 5.727 <0.05
Stage 36.039 12.013 3.000 1251.528 128.475 <0.001

Sum Sq 5 sum of squares; Mean Sq 5 mean of squares.
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production systems is that deciduous plants
enter dormancy during the fall and winter,
and fertilization is typically cut off during this
period, whereas evergreen plants retain leaves
year-round and thus require continuous N ap-
plication throughout the season (Phillips et al.
2020; Reeder et al. 1998). Distinct nutrient
demands and physiological processes across
production systems and phenological stages
justify the development of system by stage
specific sufficiency ranges.

Distribution fitting and model selection.
Normal, gamma, and Weibull distribution fits
within each system by stage group were com-
pared by AIC, with visual diagnostics as sup-
port (Table 3). Among the seven system by
stage groups supported by the results of the lin-
ear mixed model analysis, Gamma distribu-
tions provided the best fit in three groups,
Normal distributions in two, and Weibull dis-
tributions in the remaining two. In two groups,
the top two models were close (DAIC< 2), in-
dicating limited evidence to prefer one over the
other (e.g., evergreen plants at fruit develop-
ment: gamma vs. normal DAIC �0.06; ever-
green plants at bloom: Weibull vs. normal
DAIC �1.5). In the remaining groups, the
AIC differences were $3 (moderate) to
$10 (strong), favoring the selected model.

Sufficiency ranges. The best-fitting distri-
bution models for each system-by-stage combi-
nation are shown in Fig. 1. The corresponding
leaf N concentration sufficiency ranges are
summarized in Table 4.

The sufficiency range of evergreen SHB
during vegetative growth was estimated at
1.47% to 1.77% N, reflecting a relatively
tight distribution. During flower bud initia-
tion, the sufficiency range was slightly lower
(1.26% to 1.60% N) but still fell within a
similar concentration range. The sufficiency
range was broader during bloom (1.45% to
1.99% N), indicating greater variability in
leaf N concentrations at this stage. During
fruit development, the sufficiency range was
notably narrow but shifted to the upper end
of the distribution, with sufficiency levels
falling between 1.73% to 1.93% N.

The estimated sufficiency range for decidu-
ous SHB was similar during vegetative growth
and flower bud initiation, ranging from 1.48%
to 1.88% N and 1.44% to 1.70% N, respec-
tively. These values are closely aligned with

the sufficiency range observed during vegeta-
tive growth in evergreen SHB. During fruit
development, the sufficiency range broadened
and shifted to the upper end of the distribution,
with sufficiency levels between 1.73% and
2.40% N, suggesting increased leaf N concen-
trations and potentially greater variability in
plant N status at this stage.

Evergreen SHB plants generally exhibited
narrower and lower sufficiency range across
most phenological stages compared with decid-
uous SHB plants, suggesting that the physio-
logical differences or environmental conditions
that allow evergreen phenology have an impact
in plant N status. Deciduous plants undergo a
flush of new leaves after dormancy (Fang et al.
2020a). In Florida, especially from late January
to early April, these new leaves are still young
and potentially contributed to the greater vari-
ability in tissue N levels observed in deciduous
plants during fruit development. In contrast, ev-
ergreen plants retain their leaves year-round
(Fang et al. 2020a; Phillips and Williamson
2020), supporting continuous nutrient uptake,
photosynthesis, and carbohydrate partitioning,
which likely led to a greater stability in leaf N
concentrations.

Early studies on leaf nutrient standards for
blueberry in the Pacific Northwest proposed a
sufficiency range of 1.76% to 2.10% N (Hart
et al. 2006). Subsequent revisions expanded
this range to 1.40% to 2.20% N (Strik and
Davis 2023). This sufficiency range was de-
veloped for a specific sampling window (from
mid-July through mid-August) which corre-
sponds to floral bud initiation in NHB (Lukas
et al. 2022). Despite substantial differences in
climate, cultivars, and management practices
between NHB in the Pacific Northwest and
SHB in the southeastern United States, this
sufficiency range remains the primary refer-
ence for assessing the nutritional status of
SHB (Phillips and Williamson 2020).

The sufficiency ranges identified in our
study generally deviated from these thresholds,
often exhibiting lower and narrower ranges,
suggesting that the NHB standards may over-
estimate N requirements for SHB at certain
stages. Additionally, our results suggest that
stage-specific sufficiency ranges are necessary
as observed variations in sufficiency ranges
across stages likely reflect changes in plant
growth dynamics and nutrient uptake and

translocation patterns. During vegetative growth,
nutrient uptake in the roots is the main source of
N in the plant. At this time, vegetative meristems
are the main sink for N in the plant (Fang et al.
2020b). This stable source-sink dynamic likely
contributes to more stable leaf N concentrations,
making this stage themost reliable period for leaf
sampling and assessment of plant nutritional sta-
tus. In contrast, when plants transition into repro-
ductive growth, nutrient demands shift and there
is increasing sink competition (Birkhold et al.
1992; Lambers et al. 2008), leading to different
sufficiency ranges. At bloom, plants exhibit
maximum competition between vegetative
and reproductive sinks. Therefore, leaf nu-
trient concentrations can be physiologically
unstable (Birkhold and Darnell 1993; Fang
et al. 2017). Consequently, tissue diagnostics
during these stages may not accurately reflect
long-term nutritional status of the plant.

Although fruit development is a phase of
high demand of nutrients, evergreen plants
exhibited consistently high leaf N concentra-
tions. This could be a result of fertilization
practices or reduced vegetative growth at this
stage concentrating N in the leaves (Fang
et al. 2020a; Phillips et al. 2020). Addition-
ally, evergreen and deciduous plants handle N
remobilization differently. Evergreen plants
translocate N from old to new leaves through-
out the year, whereas deciduous plants lose their
leaves at dormancy and must rely on N stored in
woody tissues, which is remobilized to newly
flushed leaves during the spring (Estiarte and
Pe~nuelas; Reeder et al. 1998; Swain and Darnell
2001). These physiological differences likely
contribute to the greater stability of leaf N con-
centration observed in evergreen compared with
deciduous plants.

Model validation using random forest clas-
sification. The random forest algorithm used
to assess the consistency of the sufficiency
range approach derived thresholds achieved
an overall classification accuracy of 95.7%.
Classification performance for each system-
by-stage group is summarized in Table 5,
with accuracy ranging from 91.67% to 100%
across all groups.

Results from the random forest model sup-
ported the validity of the sufficiency range ap-
proach for diagnosing plant nutritional status,
as reflected in high classification accuracy.
This supports the idea that the sufficiency
range approach thresholds alone are valid and
reliable enough to support nutritional status
diagnostic interpretation in SHB. In instances
where the model misclassified the data, the
predicted categories were typically adjacent
to the correct ones (e.g., data labeled as “High”
predicted as “Sufficient,” or “Deficient” pre-
dicted as “Low”), indicating minor deviations
rather than systematic errors. The relative im-
portance of predictors is presented as supple-
mentary material (Supplemental Table 1). Leaf
N concentration was the most influential pre-
dictor, with 63.2% relative importance. This
was expected given that categories were de-
fined based on Leaf N concentration distribu-
tions. Other influential predictors had minor
effects (<10.5% importance). The ability of
the model to correctly classify sufficiency

Table 3. Comparison of Akaike information criterion (AIC) values for normal, gamma, and Weibull
distribution models used in the development of system by stage specific sufficiency ranges. Data
were collected from southern highbush blueberry farms in Florida between 2021 and 2025.

System Stage

AIC

Normal Gamma Weibull
Evergreen Vegetative growth –27.72 –30.79i –15.13

Flower bud initiation 29.62 35.81 38.34
Bloom 152.50 154.38 151.03
Fruit development –95.37 –95.43 –88.27

Deciduous Vegetative growth 69.14 63.33 80.90
Flower bud initiation –66.91 –64.09 –61.29
Bloomii — — —
Fruit development 359.15 366.54 349.71

i The selected models with the lowest AIC values are bolded.
ii Leaf sampling was not possible during bloom in deciduous SHB because leaves were not fully
expanded.
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Fig. 1. Distribution of leaf nitrogen (N) concentrations in southern highbush blueberry across system by stage groups. Colored bars beneath each histogram
represent interpretation ranges based on the best-fitting distribution of the group, with five transitional points (e.g., Sufficiency (green) 5 0.25–0.75 quan-
tile interval; Low/High (yellow) 5 0.025–0.25 and 0.75–0.975; Deficient/Excessive (red) 5 <0.025 and >0.975. Data were collected from southern
highbush blueberry farms in Florida between 2021 and 2025.
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categories using additional plant, management,
and environmental variables provides further
evidence for the agronomic and physiological
relevance of the sufficiency range approach de-
fined categories.

Conclusion

There is a constant need to refine leaf nu-
trient standards in horticultural crops as new
cultivars are adopted and production systems
evolve. Previous studies suggest optimal leaf
N concentrations in blueberry range between
1.76% and 2.10%. This range was developed
primarily for NHB cultivars and is not neces-
sarily applicable to all growing regions. A
robust dataset, including data from five lo-
cations, nine SHB cultivars, and multiple
years, was analyzed in this study. Results from
mixed linear methods supported the develop-
ment of system-by-stage sufficiency ranges.
New sufficiency ranges for SHB were defined.
System-by-stage sufficiency ranges align with
plant physiological patterns and contrast with
the existing guidelines. In particular, our re-
sults suggest that current standards may be
overly broad, potentially limiting their sensi-
tivity to detect meaningful differences during
critical windows for plant nutrient assessment.
System-by-stage sufficiency ranges were vali-
dated through a random forest model using
plant, environmental, and management data.
New, crop-specific sufficiency ranges could
lead to more precise management, improv-
ing fertilizer-use efficiency and environ-
mental sustainability in SHB production.
Future research should focus on linking leaf

N concentrations to yield to further optimize
nutrient management in SHB farms.
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